Deciphering single cell metabolism by coherent Raman scattering microscopy.
نویسندگان
چکیده
Metabolism is highly dynamic and intrinsically heterogeneous at the cellular level. Although fluorescence microscopy has been commonly used for single cell analysis, bulky fluorescent probes often perturb the biological activities of small biomolecules such as metabolites. Such challenge can be overcome by a vibrational imaging technique known as coherent Raman scattering microscopy, which is capable of chemically selective, highly sensitive, and high-speed imaging of biomolecules with submicron resolution. Such capability has enabled quantitative assessments of metabolic activities of biomolecules (e.g. lipids, proteins, nucleic acids) in single live cells in vitro and in vivo. These investigations provide new insights into the role of cell metabolism in maintenance of homeostasis and pathogenesis of diseases.
منابع مشابه
Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy.
Imaging of nucleic acids is important for studying cellular processes such as cell division and apoptosis. A noninvasive label-free technique is attractive. Raman spectroscopy provides rich chemical information based on specific vibrational peaks. However, the signal from spontaneous Raman scattering is weak and long integration times are required, which drastically limits the imaging speed whe...
متن کاملLabel-free imaging of lipid dynamics using Coherent Anti-stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) microscopy.
The recently developed Coherent Anti-stokes Raman Scattering (CARS) microscopy and Stimulated Raman Scattering (SRS) microscopy have provided new methods to visualize the localization and regulation of biological molecules without the use of invasive and potentially perturbative labels. They allow rapid imaging of specific molecules with high resolution and sensitivity. These tools have been ef...
متن کاملChemically specific imaging of cryptosporidium oocysts using coherent anti-Stokes Raman scattering (CARS) microscopy.
We demonstrate the application of coherent anti-Stokes Raman scattering microscopy for the rapid, label-free chemical imaging of waterborne pathogens. Chemically selective images of cryptosporidium were acquired in just a few seconds using coherent anti-Stokes Raman scattering microscopy, demonstrating its capability for the rapid detection of cryptosporidium at the single oocyst level. We disc...
متن کاملBroadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy.
The signal and idler beams from a picosecond, synchronously pumped optical parametric oscillator (OPO) provide the two colors necessary for coherent anti-Stokes Raman scattering (CARS) microscopy. The OPO provides a continuously tunable frequency difference between the two beams over a broad range of Raman shifts (100-3700 cm(-1)) by varying the temperature of a single nonlinear crystal. The ne...
متن کاملFast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy
Traditionally, molecules are analyzed in a test tube. Taking biochemistry as an example, the majority of our knowledge about cellular content comes from analysis of fixed cells or tissue homogenates using tools such as immunoblotting and liquid chromatography-mass spectrometry. These tools can indicate the presence of molecules but do not provide information on their location or interaction wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in chemical biology
دوره 33 شماره
صفحات -
تاریخ انتشار 2016